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LONG-TIME NUMERICAL INTEGRATION OF THE THREE-DIMENSIONAL WAVE

EQUATION IN THE VICINITY OF A MOVING SOURCE*

V, S. RYABEN'KII t, V. 1. TURCHANINOV+*, AND S. V. TSYNKOV_

Abstract. V_ propose a family of algorithms for solving numerically a Cauchy problem for tile three-

dimensional waw, equation. The sources that drive the equation (i.e., the right-hand side) are compactly

supported in space for any given time; they, however, may actually move in st)ace with a subsonic speed.

The solution is calculated inside a finite domain (e.g., st)here ) that also moves with a subsonic speed and

always contains the support of the right-hand side.

The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave

equation. They allow one to calculate the solution for arbitrarily long time intervals without error accumu-

lation and with the fixed non-growing amount of the CPU time and memory required for advancing one time

• step. The algorithms are inherently three-dimensional; the), rely on the presence of lacunae in the solutions

of the wave equation in oddly dimensional spaces.

The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly

accurate unsteady artificial boundary conditions to be used for the numerical simulation of wan,es prot)agating

with finite speed over unbounded domains.

Key words, wave equation, lacunae, finite-difference approximation, explicit numerical integration,

arbitrarily long time intervals, non-accumulation of error, uniform error bounds, fixed expenses per time

step

Subject classification. Applied and Numerical Matheinatics

1. Introduction. We will be solving numerically a Cauchy problem for the three-dimensional wave

equation:

Ot-_2 - \0x.21 + _ + 0x23 ] = f(2, t), t > O, (1.1)

u t=0 = --0u = 0. (1.2)
Ot t=o
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We will be interested in calculating the solution u = u(Y,t) only for those values of tile argument 2 =

(xl, x2, x3) that belong to the ball S = S(t) defined by' the following inequality

(Xl - x°) 2 + (x., - x°) _ + (x3 - x°) 2 < d2/4. (1.3)

In inequality (1.3), d is the (tiameter of the sphere S(t), and the functions x ° = x°(t), x!_ = x°(t), and

x ° = x°(t) are given smooth functions of their argument t - time; these fimctions define the motion of the

sphere's center so that

dt / + \ dt f +\dr ] <-k2' (1.4)

where k < c. In other words, we consider only subsonic motions of the sphere S(t), the maxinmm speed

k of its center may never exceed the speed of sound c (see equation (1.1)). Regarding the right-hand side

f(2, t) of equati(m (1.1), we always assume that it is a sufficiently smooth function with respect to all its

four arguments and also

suppf(2, t) = { (xl,x2,x3,t)12 E S(t), t > 0}. (1.5)

In this paper, we construct efficient numerical algorithms for solving the foregoing problem. These

algorithms employ the simplest central finite-difference scheme that approximates problem (1.1), (1.2) on

smooth solutions with the second order of accuracy. This scheme has been chosen primarily for the reason

of simplicity so that we can demonstrate the concept using the least cumbersome approach. Generally, any

scheme that possesses the properties of stability and consistency on smooth solutions, including high-order

schemes, can be used for building the algorithms of the type descril)ed hereafter.

The second order central-difference scheme is constructed on the uniform Cartesian grid with the size h

in all spatial directions and time step r:

(Zm,, Bin2, ..... t m2 m3 m47") 1nl, m'2,7tz.3 = O, 1, +2,... , m4 = O, 1, 2 .... _.Z t,,4 )
"1

h, h, h, ±

In every grid node m =- (nO, ra2, m3, m4), equation (1.1) is replaced by tile finite-difference equation

E a .... u,, = f .... m4 = 2 3,4,.... (1.6)
n E- Nm

The discrete solution u,, = u,,,,,_2,,_,n _ is defined on the same grid: nl,n2,n3 = 0,+1,+2,..., n4 =

0, 1,2,3,...; equation (1.6) connects the values of u,_ in the following nine nodes of tile grid that form

the stencil Nm:

{ (ml It, m2h, m3h, (ra4 - j)7"), j = O, 1, 2,

((nq ± 1)h, rn2h, m3h, (TTt4 -- 1)7"),

N,,, = (nqh, (m.2 + 2)h, m3h, (m4 -- 1)7"),

(mlh, m._h, (m3 + 1)h, (m4 - 1)r).

(1.7)



Thecoefficientsarea of the discrete operator and the values f,, of the discrete right-hand side in (1.6) are

defined as follows

1, )

-r2

am,, = --r 2 ,

--r2

--2 + 6r 2,

if n = (m,,m2,m3, m,), n = (m,,m2,m3, m4 - 2)

if n = (nh + 1, m2,m3, m4 - 1),

if n = (nh,m2 + 1,nl.3,m4 - 1),

if n = (n_l,m2,m:_ ± 1, m,1 - 1),

if n = (no,m2,m3,m4 - 1),

(1.8)

where r is the Courant number

f,,, = v2 f (m , h, m2h, nt:d_, (m4 - 1)Th), (1.9)

7 1

r = _ _< cv_; (1.10)

estimate (1.10) immediately follows from the standard stability considerations of yon Neumann type. Initial

conditions (1.2) are replaced by the conditions

u_,,,:,,,_ = 0, p - u4 = 0, 1. (1.11)

It is known that if the right-hand side f(2, t) is sufficiently smooth with respect to all its arguments then the

finite-difference solution

Ul _ ---- Ulzl,n2,n3,n 4 ---- _P n] J_2 J/3 _

where p = n4, converges to the continuous solution u(Ye, t) of problem (1.1), (1.2) as the grid size decreases

and the following estimate holds

max [u(n,h,n.2h,nah,pr) -u_.,,,=.,,. I _<CIZIt,-Th 2, p'r < T,n,,., (1.12)

here C = C(Tfinal ) iS a constant, K is a sufficiently large positive integer number, and [flK,T is the sum of

maximal absolute vahles of all derivatives of the function f(2, t) up to the order K for t _< Tfi,,al. Therefore,

speaking formally, estimate (1.12) allows one to use the finite-difference scheme (1.6), (1.11) for calculating

the solution u(_, t) of problem (1.1), (1.2) on arbitrarily long time intervals 0 < t < Tn,al.

There are, however, two most substantial obstacles. First, when calculating the sohltion using the scheme

(1.6), (1.11), the number of grid nodes involved in the computation on each time level increases approxinmtely

as (d/h + p)3 with the numl)er of level p. Consequently, when p _ Tfi,_l/_" and W = rh, r = 1/cv_, this

number is of the same order of magnitude as (Z_) :t. Therefore, the associated storage and CPU time

requirements grow rapidly as the final time Tn,,,l increases. Second, estimate (1.12) basically does not



guaranteetilealgorithmfrom the possible error accumulation as the final time Tnnal and the corresponding

number of steps increase. Indeed, although the constant C in inequality (1.12) does not depend on the grid

size h, it, generally speaking, depends on the final time T_,al (nlay grow with Tfinaj).

In the paper, we propose three approaches to improve the simplest sctienm (1.6), (1.11); these approaches

take into account sortie specific properties of the solution to problem (1.1), (1.2). Similar approaches can

t)e developed for other converging schemes, besides the scheme (1.6), (1.11). Each of the three algorithms

proposed hereafter guarantees that tile error will not accumulate as tile number p of the time level in-

creases. Moreover, both the memory and CPU time required for advancing each time step remain bounded

independently of p (and Tfi,,aj) for the fixed grid sizes h and 7.

The numl)er of arithmetic operations required for advancing one time step using either of the three

algorittuns that we are discussing is O(N), where N is the number of grid nodes in space (i.e., on one time

level) inside the sphere of the fixed diameter d; clearly, N = O(h-3). This nuniber does not depend on t, i.e.,

does not increase with p because unlike in the original scheme (1.6), (1.11), the computational domain in the

new algorithm will not need to expand in space as the time goes by. Obviously, the iiumber O(N) is optimal

(linear with respect to tile grid dimension) and cannot be improved by choosing any other algorithm. The

required memory (number of words) in all three versions of the new algorithm is of the order O(N) as well,

i.e., does not exceed some C- N, where C is a constant that depends on the version. For the third algorithm

this constant is smaller than for the others.

All thre.e aforementioned methodologies for improving the original scheme (1:6), (1.11) so that one can

calculate the solution u(2, t) of problem (1.1), (1.2) on the domain 2 E S(t) and arbitrarily large time

intervals rely on a particular property of solutions to the three-dimensional wave equation (1.1), namely the

property of having lacunae.

The lacunae-based technique proposed in this paper for the long-time numerical integration of the three-

dimensional wave equation in the neighborhood of a moving source is a generalization and extension of the

technique developed previously in [1] for the case of stationary sources. In the future, these lacunae-based

techniques will be used as a building block for constructing globhl artificial boundary conditions (ABCs) for

the numerical sinmlation of waves propagating with finite speed over infinite domains. Tile latter framework

includes, ill particular, the problems of electromagnetic diffraction and scattering, as well as the problems in

both ambient and advective acoustics. The unsteady ABCs' methodology that we have nientioned will be

described in a forthcoming publication. A general review of different ABCs' methodologies available in tile

literature can be found in [2].

2. Lacunae of the Wave Equation. Consider the nonhoniogeneous wave equation with zero initial

conditions:

Ot---7 - \Ox_ + _ + Ox'_] = _(2, t), t >_O, (2.1)

_V

v t=o = O-t t=o = 0. (2.2)

Assume that p(_, t) is a sufficiently smooth function with respect to all its arguments and that _(2, t) = 0

h)r t < 0.



Forevery(5:,t), the solution v = v(5:, t) of problem (2.1), (2.2) can be written ill the forin of the Kirchhoff

integral:

v(x,t) -- 1 j/J _o(_,t- p/c) d_,47rc2 p
p<ct

(2.3)

where p = _/(xl - _1)2 + (x2 - (2) 2 + (x3 - _3) 2 and d4 = d(ld(2d_3. The integration in (2.3) is t)erformed

over the ball of radius ct centered at 5: in tile space 4 = ((1 ,_2,_3). Formula (2.3), in fact, implies that the

solution v(2, t) at the point (5:, t) depends only on the values of _(4, 0) on the surface of the characteristic

cone (its lower portion) with the vertex (5:, t):

(xl-_l) 2+(x2-_2) 2+(x3-_3) 2 =c'Z(t-0) 2 , 0<t (2.4a)

and does not depend on P(4, 0) when (4, 0) belongs to the interior of the cone (2.4a). In other words, changing

the values of p(_, 0) in the interior of the cone (2.4a) will not affect thesolution v(5:, t) at the point (5:, t).

To emphasize this circumstance, we will call the domain

(z_ - 6) 2 + (x2 - _,)2 + (z3 - _3)2 < c"(t - 0)2, 0 < t, (2.4b)

i.e., the interior of the characteristic cone (2.4a) the lacuna of the right-hand side of equation (2.1) with

respect to the point (2, t). The presence of the lacuna (2.4b) of the right-hand side implies that the solution

v(5:, t) of (2.1), (2.2) will also have a lacuna D+(Q) with respect to the domain Q of the right-hand side.

Indeed, consider a ?i-source for equation (2.1) concentrated at the point (4, 0) of the space-time: _(4, 0). At

any moment of time t > 0, the solution of problem (2.1), (2.2) driven by this source will be concentrated on

the surface of the sphere of radius c(t - O) centered at 4 in the space 2 = (xl, x2, x3). Inside this sphere, the

solution will be identically zero: v(5:, t) _-__0 for p - 12 - _1 < c(t - 0). Therefore, let us now interpret the

surface (2.4a) as the upper portion of the characteristic cone of equation (2.1) in the space-tinle (5:, t) with

the vertex (4, 0). Then, the solution of (2.1), (2.2) driven by (f(4 , 0) is zero in the interior of the cone (2.4a),

i.e., on the domain (2.4b) that we now denote by D+(4,0),

D+(4, O) = { (5:,t)l 12- _l < c(t- 0), t > 0}, (2.4c)

and call the lacuna of the fundamental solution of the wave equation. (Note, this fundamental solution is

actually a single layer on the spherical surface 12-41 = c(t-0), t > 0.) If we consider a general source _(4, 0)

rather than the 6-source _(4, 0), then for every particular (4, 0) the solution of (2.1), (2.2) inside the lacuna

D+(4,0) given by (2.4c) does not depend on the value of _(4,0) at this point (_,0). By the superposition

principle, the solution of (2.1), (2.2) with a general source _ will be concentrated on the set given by the

union of all spheres 15:- 4] = c(t - 0), t > 0, when the vertex (4, 0) of the cone (2.4a) sweeps the support of

the right hand side supp _(4, 0). Accordingly, the intersection of all D+(4, 0) of (2.4c) for all (4, 0) E Q will

be called the lacuna of the solution v(5:, t) with respect to the domain Q:



D+(Q)= N D+(_'O)" (2.4d)
(_,O)EQ

Clearly, the solution v(2, t) of (2.1), (2.2) is zero on D+(Q) of (2.4d)

if

v(2, t) for (2, t) E D+(Q) (2.5)

supp _ C_ Q. (2.6)

Alternatively, one can say that changing the values of _(_,0) in the domain Q is not going to affect the

solution v(2, t) of (2.1), (2.2) in the points of tile lacuna D+(Q) given by (2.4d). In other words, we see

that the waves governed by the three-dimensional wave equation (2.1) have trailing fronts. If the source

is compactly supported in both space and time, then at any given location 2 in space the solution v(2, t)

be(:omes identically zero after a finite interval of time. This finite time interval is the time from the moment

of source activation till the moment when the point 2 falls into the lacuna D +(Q) given by (2.4d), or in

other words, till all the waves generated by the source have pass through 2 and accordingly, the solution

there l)ecome zero again.

If the domain Q is defined as follows

Q = {(_,t)l_ c 8(t), to < t < t_},

then condition (2.6) implies that that the solution v(2, t) of (2.1), (2.2) satisfies the identities

(2.7)

and

v(2, t)-O, for t<to (2.8a)

v(2,t) - O, for 2 E S(t), t > to + d + (tj - t°)(c + k) (2.8b)
-- C--k

The first identity, (2.8a), is obvious, it takes place because the initial data of the Cauchy problem are

homogeneous, s_e (2.2). The second identity, (2.8b) holds in virtue of (2.6) because the region of the space-

time (2, t) defined as {2 E S(t), t _> to + a+/t'-t°)(_+k)__k } is completely contained inside the lacuna D+(Q)

of (2.4d). In other words, as long as (1.4) holds the time interval d+(tl-to)(C+k) is sufficient for all the wavesc--k

generated by the sources inside S(t) du_'ing to < t < tl to completely leave the moving domain S(t). For

the ease of stationary sources, k = 0, the inequality of (2.8b) reduces to the obvious estimate t >_ tl + d/c,

see [1]. Let us also note that the estimate for t given in (2.8b) is, in fact, conservative, it does not make

any assumptions regarding the character of the source motion except that its maximal speed is k < c. To



obtain(2.8b),oneonlyassumesthat at anyt > to tile source, i.e., S(t), can be anywhere inside tile sphere

of diameter d + 2k(t - to) centered at the center of S(to). If, however, we make an additional assumption

regarding the motion of the sphere, e.g., that it moves with a constant speed k is some prescribed direction,

then the estimate of (2.8b) can be alleviated and instead we obtain

d
v(_,t) - 0, for • E S(t), t > t_ + --. (2.8c)

-- C--]_

For a stationary source, k = 0, (2.8c) again reduces to t > t_ + d/e of [1].

Let us now introduce the following partition of unity. Define the function

1, 0<t<l/2

P(t), 1/2 < t < 1
• (t) =

0, t>l

• (-t), t _< 0

where P(t) is a polynonfial of the type

(2.9)

l+a(t-_)+b(t "_)3+e(t-_)5 d(t _)7+ (t _)0P(t) = _ + - e -

with the coefficients a, b, c, d, and e such that the following equalities hold

P(1) = P'(1) = P"(1) = P"'(1) = P(tV)(1) = 0.

Obviously, P(1/2) = 1 and the derivatives of P(t) up to the fourth order are equal to zero at t = 1/2.

Therefore, ¢2(t) is an even finlction with four continuous derivatives for all t E I1_and also _(t) is compactly

supported, _(t) = 0 for It t > 1, i.e.,

supp_(t) = [-1, 1].

Specify now a parameter T and introduce the functions

k_j(t,T)=q2(_), j=0 1,2,...

Clearly,

supp_j(t,T) = [(j - 1)T, (j + 1)T],

Moreover, for any T > 0 we have

j = 0,1,2,...



0_2

= 1, t>0. (2.10)
j=0

The representation of a function which is identically equal to 1 in the form (2.10) is a partition of unity.

Notice that for every given t no more than two terms on the left-hand side of the identity (2.10) may (lifter

from zero.

We now represent the right-hand side f(Y, t) of equation (1.1) in the form

OG OoI(_,t) = f(Y_,t) _j(t,T) = _ q,j(t,T)f(_,t) = _-_fj(J:,t,T),

j=0 j 0 j=O

where .fj(_, t, T) = _j(t, T)f(_, t). Clearly,

(2.'11)

suppfj(2, t) = Qj(T), (2.12)

Qj(T) = { (y,t)l_ C S(t), (j - 1)T < t < (j + 1)T}.

Consider the following sequence of problems

(2.13)

02ILj C2 ( 02't_j 02Uj 02Uj

(2.14)

t=O 0Uj t=Ouj - Ot =0, j=0,1,2,...

Because of the linearity of problem (1.1), (1.2) and representation of f(5:, t) in the form (2.11), the solution

u(_, t) of problem (1.1), (1.2) can also be represented as a similar sum

u(2, t) = )_., uj(x, t, T), (2.15)

j=0

where uj(x, t, T) is the solution of problem (2.14). Let us show that for 2 E S(t) and any fixed t > 0 there

are only a few values of j for which uj(_, t, T) # O. First, we apply identities (2.8a) and (2.8b) which hold

under conditions (2.6), (2.7) to the solution uj(2, t, T) of problem (2.14). In so doing, instead of (2.6), (2.7)

we use (2.12), (2.13). Then, instead of (2.8a) and (2.8b) we obtain the following two identities

and

uj(_,t,T) = O, for t < (j - 1)T (2.16a)

d + 2T(c + k)
uj(y,t,T)=O, for _E S(t), t> (j-1)T+ (2.16b)

-- c-k



Identities (2.16) imply that for any given t and T the solution uj(2, t,T) may differ from zero for 2 E S(t)

only if the following two inequalities hold simultaneously

(j - 1)T < t, (2.17a)

d + 2T(c + k)
t < (j - 1)T + (2.17b)

A fixed prescribed t = to can meet both conditions (2.17) if and only if the index j satisfies the inequalities

t° d + 2T(c + k) to

1 + T (c- k)T < j < 1 + _. (2.18)

Therefore, there is only a finite number of values j for which uj(Y', t, T) differs from zero for • C S(t) and

given t. If k : 0 and T > die (and also t o is sufficiently large) then there is no more than three such values

ofj. If T -----+ +0 or k ---+ c then the number of indexes j that satisfy (2.18) increases with no bound.

Henceforth, we will be using representation (2.15) for the solution u(_,t) of probtenl (1.1), (1.2). We

note that the term u j(2, t, T) in formula (2.15) is of interest, for us only till the moment

d + 2T(e + k)
t = (j - 1)T + (2.19)

C -- k

as starting from this moment the component ui(Y', t, T) turns into zero inside the computational domain

S(t) because of (2.16b) and therefore no longer contributes into the sum (2.15). The sphere S(t) of diameter

d centered at (x°(t), x°(t), x°(t)) represents at the tinm t of (2.19) the trailing f_vnt of the propagation of

u i(J', t, T) over the unperturbed zero background. (In fact, in many cases the spherical surface S(t) may be

a conservative estimate for the actual location of the trailing front; but at ans' rate, S(t) is always inside the

trailing fi'ont.)

Numerical algorithms proposed hereafter are based on the concept that when calculating the solution

u(2, t) of (1.1), (I.2), for every t we actually need to calculate only a few terms uj(._, t, T) in the sum (2.15)

that differ from zero for 2 C S(t).

Let us make the following important remark. Specify some z > 0 and consider the following problem

periodic with the period z in every coordinate direction xt, l = 1, 2, 3.

02vj

Ot'_
c._( a_v_ 0% o_,,j

--- \ Ox2 +-_x.? + Ox2 ] = fj(2, t,T,z)

vj(_2, t,T,z) = O, t < (j - 1)T,

(2.20a)

Vj(Xl + klz,x2 ± k2z,x3 + k3z, t,T, z) = vj(2, t,T, z)

fj(x_ + ktz,x2 + k2z,x._ + k3z, t,T,z) = fj(2, t,T,z)

kl, k2, ]¢3= 0, 4-1, ±2,...

fj(Y=,t,T,z) - fj(_,t,T) if Ixtl < z/2, 1 = 1,2,3.

(2.20b)



TttEOREM2.1. The solution vj(2, t,T,z) of problem (2.20) coincides with the solution uj(Y_,t,T) of

problem (°2.14)

on the domain

uj(2, t, T) = vi(2 , t, T, z) (2.21)

z-d

2cS(t), (j-1)T<t < (j-1)T+ c+-----k'" (2.22)

Proof. Let US first note that
as long as d_ < k < 1 (see (1.4)), where _2° = 2°(t) may be any

prescribed law of motion for the center of the sphere S(t), the right-hand side fj (2, t, T, z) of (2.20a), which

is periodic in all three coordinate directions Xl, _2, and x3, may differ from zero only on the collection of

balls

(X! -klz)2 +(x2-k2z)2 A-(x3-k3z)2 <_ +k(t-(j-1)T) , (2.23)

t _> (j - 1)T, kl, k2, k3 = 0, +l, =t=2,...

This actually follows from the fact that the sphere S(t) for t > (j - 1)T completely belongs to the ball (2.23)

for kl = k2 = k3 = 0. Moreover, it is easy to see that the lower portion of tile characteristic cone (2.4a):

(x_ - 6) 2 + (x2 - _2)2 + (x3 - _3)2 = e'2(t - O)"2, 0 < t,

with the vertex in an arbitrary point (2, t) that belongs to the ball (2.23) for kl = k2 = k3 --- 0 intersects

none of the spherical domains (2.23) for k 2 + k 2 + k32 # 0 (i.e., none of the other balls (2.23)) on the time

interval (j - 1)T < 0 < t if only

z-d
t < (j - 1)T + -- (2.24)

c+k"

Then, the Kirchhoff formula (2.3) implies that the value of the solution vj(2, t, T, z) in the vertex (2, t) of

the characteristic cone (2.4a) will not depend on the values of the right-hand side fj (_, 8, T, z) of equation

(2.20a) on the domains (2.23) for k 2 + k_ + k_ # 0 (_ is substituted for 2 and 0 is substituted for t in formula

(2.23)). In particular, t he value vj (2, t, T, z) will not change if the right-hand side fj (_, 8, T, z) on all domains

(2.23) except the "central" one kl = k2 = k3 = 0 was replace by the identical zero for all 8 < t, t of (2.24).

On the other hand, this replacement makes the right-hand side of (2.20a) coincide with the non-periodic

right-hand side of equation (2.15), which has the solution uj(2, t, T). Thus, vj(2, t, T, z) = uj(2, t, T) for all

those (_, t), for which t satisfies (2.24) and 2 belongs to the ball (2.23) for kl = k2 = k3 = 0. At the same

time, it has been mentioned that the sphere S(t) completely belongs to the ball (2.23), kl = k2 = k3 = 0,

for any t > (j - 1)T. This proves the theorem. 13
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3. Finite-Difference Algorithms. We will construct three algorithms for the approximate calculation

of the solution to problem (1.1), (1.2) on arbitrarily long time intervals using finite-difference scheme (1.6).

All three algorithms will guarantee that the error will not accunmlate and computer expenses per time step

(both CPU time-wise and storage-wise) will not increase, i.e., will remain fixed and bounded throughout the

entire computation. All three algorithms will also have the same non-improvable computational complexity,

i.e., asymptotic order of the number of required arithmetic operations and amount of memory with respect

to the grid size. However, tile algorithms will differ from one another by the actual number of required

arithmetic operations and amount of memory (while still having tile same .asymptotic order with respect to

the grid size h), as well as by certain conveniency features from tile standpoints of their justification on one

hand and practical computing on the other hand.

For all three algorithms we assume that T > 0, h > 0, 7- > 0, and z > 0 are chosen so that T = qT,

z = rh, where q and r are positive integers, and T/h _< 1/cv_, i.e., the von Neumann stability criterion is

met.

The First Algorithm. This algorithnl is based on the representation (2.15) of the solution u(2, t) to

problem (1.1), (1.2) in the sphere S(t). Let us fix some arbitrary integer / and consider t from the interval

(1 - 1)T < t < 1T.

For these t, formula (2.15) can l)erewritten as follows

(3.1)

u(2, t) = u1__(2_, t, T) + ut-,_+, (2, t, T) +... + ut(x, t, T), (3.2)

where u j(2, t, T), j = l - s, l - s + 1,... , l, are solutions of the corresponding protflems (2.14). The positive

integer number s is chosen from the inequalities (3.1) and (2.18). If, instead of the smallest possible s that

satisfies the foregoing constraints, one takes, e.g., s + 1, then an additional term ut-._-i (2, t, T) will simply

appear in the sum (3.2). This term, however, will turn into zero for 2 E S(t) and t satisfying (3.1) and

consequently, the work required for computing this term will be superfluous.

Assume, for definiteness, that s is chosen according to the formula:

d + 2T(c + k)]s = (-c--- k-)-T + 1, (3.3)

where [. ] denotes the integer part. We will be calculating the solution u(2, t) of problem (1.1), (1.2) on the

grid n = (nah, n2h, n3h, n4T) for

(nlh, n2h, n3h) E S(n4T), (1 - 1)T _< n47 _<lT,

i.e., inside the sphere S(t) for t satisfying (3.1). According to (3.2) and (3.3), the exact values of this solution

on the grid are given by

U(nlh, n2h, n3h, n4r) = ut-_(nlh, n2h, n3h, n4r, T) +

+ut-_+l(nlh, n2h, n3h, n4r, T) + ... + ut(nlh, n.2h, 7t3h, n4 7-, T)

(3.4)
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Insteadof theexactvalues(3.4)thefirst algorithmthatwearediscussingyieldsapproximate values of tile

solution u(2, t) oil the grid according to the formula:

U(nlh, n,2h, n3h, n,lr) _ u_,II =- u,_(l - s, T) + Un(I- s + 1, T) +... + u,,(l, T). (3.5)

Each term u,,(j, T), j = l - s,l - s + 1,... ,l, on the right-hand side of relation (3.5) solves the following

finite-difference counterpart to problem (2.14):

Z a,..u.(j,T)=fi.(j,T), j=l-s,l-s+l .... ,I,
_ E N,n

u,(j, T) = 0, if 7/,47 _< (j - 1)T + r.

The right-hand side f,,(j, T) of (3.6) is given by the expression

ft,(j, T) = fj(_,t,r) e=l,,, h,-,_h,,n_m, t=,,,, _ =

= k_j(t,T)f(_,t) _=(,,,,h,m2h,,,,3h),t=,,,,_"

(see (2.11), (2.12), (2.13)). Obviously,

(3.6)

f,,(j, T) = 0, if mar <_ (j - 1)T. (3.7)

Actually, it turns out that to obtain a discrete approximation (see (3.5)) to the solution uj(_, t) of problem

(2.14) for _ E S(t), (l - 1)T < t < lT, one needs to solve the finite-difference problem (3.6) for every j,

j = I - s,l - s + 1,... ,l, only on tile time interval (j - 1)T < t < IT (rather than 0 < t < IT). The length

of the largest of these intervals does not exceed d/(c - k) + 4cT/(c - k) (see (3.3)) and does not depend on

I. Therefore, the following theorem holds.

TIIEOREM 3.1. The error due to the replacement of the true solution uj(_, t) in the exact formula (3.4)

by the difference solution u_,t) =_ _-:_un(j, T) of the first algorithm given by the approximate formula (3.5)

does not exceed (s + 1)Ch 2,

max U(nlh, n.2h, n3h, n4r) -- U(nI) <_ (S + 1)Ch 2,
72 1 _?/12 __'_3, tl 4

(3.8)

where the constant C depends only on the properties of the function f(_, t) for (1 - s- 1)T < t < lT and s + 1

is the number of terms in the sum (3.5). Theorem 3.1 is, in fact, an obvious consequence of the construction

of the first algorithm. Indeed, the estimate of type (1.12) will hold for each term on the right-hand side of

formula (3.5). None of these terms is calculated on the time interval that exceeds T = d/(c- k) + 4cT/(c- k)

in length and therefore, all const_mts will be bounded. Consequently, the overall error estimate can be writte.n

in the form (3.8). Note, unlike in estimate (1.12), the constant C of (3.8) includes the factor of type [flh',7-

that reflects the smoothness properties of the right-hand side. The function @(t) of (2.9) that helps us huild
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thepartitionof unity (2.10)waschosensufficientlysmoothfor theparticularreasonof guaranteeingthat
thispartitionthat wasintroducedprimarilyforthealgorithmicpurposeswill not"interfere"with theerror
estimatesforthealgorithm.Obviously,theerrorgivenby(3.8)will notincrease,i.e.,will remainuniformly
bounded,whenthenumbern4 of the time step increases as long ms the smoothness properties of f($, t)

remain uniformly "good" with respect to t. Note, for higher-order schemes one ma_ _need smoother functions

_(t).

Let us now estimate the computer resources required by the proposed algorithm. Clearly, both the

operations count and the amount of memory (i.e., number of words) needed for advancing one time step

when calculating each term u,,(j, T) of (3.5) are of the same asymptotic order O(h -3) with respect to the

grid size h. The number of terms s + 1 does not change (i.e., does not grow) when the grid is refined as

long as T is fixed. Therefore, neither does the overall number of arithmetic operations and words of memory

required when calculating the solution by means of formula (3.5) -- both quantities remain of the order

O(h-3). The number of grid nodes that belong to the sphere S(t) fi)r a fixed t = n4T is also of the order

(_9(h-3); therefore, the foregoing algorithm appears asymptotically non-improvable - linear with respect to

the grid dimension -- as long ms one uses the scheme (1.6).

We also note that out of tile several terms that need to be computed according to (3.5), the first one,

u,_(1 - s, T), is the most expensive numerically, its calculation by an explicit, scheme up to the time level

t -_ n4r -= lT requires tile widest grid domain of the size approximately

d 4cr 1 ((3c- k)d + (3.9)d+2(s+l)Tc=d+2 _+c,_]c- c-k

Dividing (3.9) by h and taking the third power of the result, we will obtain a quantity of tile order O(h -3)

(as long as T is fixed while the grid is refined). This quantity gives an estimate of what will be the actual

amount of memory needed for advancing one time step using the first algorithm.

Finally, let us mention that when discussing tile long-time integration we can consider a formulation that

slightly differs from (3.1). Considering t from the interval (3.1) means, in fact, that 1 can be arbitrarily large

and we calculate the solution on the interval of the fixed length T, which can be placed arbitrarily far away

from the initial data. Alternativel), one may be interested in knowing the overall temporal evolution of the

solution, i.e., in calculating the solution on an arbitrarily long time interval, say from 0 to some large Tribal.

From the standpoint of building a lacunae-based algorithm that provides for non-accunlulation of error and

non-increasing expenses, this formulation is not nmch different from the one analyzed previously. For every

time interval (3.1), T << Tfi,,_l, i.e., every l, the solution will still be computed using formula (3.5). To

advance flirther in time, we then need to replace I by I + 1 in formula (3.1). This will simply imply dropping

the first term u,(1 - s, T) on the right-hand side of formula (3.5) and adding the new last term u,(1 A- 1, T).

In so doing, each term u(l- q, T), q = 0, 1,... , s- 1, for the previous interval l becomes u(l + 1 - (q + 1), T)

for the new interval 1 + 1. Of course, for the new interval there is no need to calculate this term from the

very beginning by solving the corresponding problem (3.6) starting from j = 1 - q; the calculation of each

term of (3.5) that is not dropped when going from 1 to l + 1 (i.e., every term except the first one) is rather

continued fi'om the previous interval using tile same explicit scheme.

The Second Algorithm. In this algorithm, instead of formula (3.2) we use the following representation

of the solution u(2, t) for 2 C S(t), (l - 1)T < t < IT:

13



u(2, t) = vt-_(2, t,T,z) + vt-8+l(2, t,T,z) +... + vt(x,t,T,z),- (3.10)

here vj (aY',t, T, z), j = 1 - s, l -s + 1,... , l, are solutions of tile corresponding problems (2.20). In so doing,

the period z has to be chosen so that for every function uj(2, t, T), j = l - s, l - s + 1 .... , I, the equality

hoht on tile entire time interval

u j(2, t, T) = vj(2, t, T, z)

(j- 1)T<t< (j-1)T+
d + 2T(c + k)

c-k
(3.11)

oil which according to formulae (2.17) tile function uj(2, t,T) may differ from zero for 2 E S(t). In other

words, we require that the time interval (3.11) be contained inside the time interval (2.22) (see Theorem 2.1)

or

(j - 1)T +

which yields the following condition:

d+ 2T(c+ k) z - d
< (j - 1)T + -----i'" c - k - c +

1
z > --(2cd+ 2(c+ k)2r). (3.12)

-- c-k

Condition (3.12) essentially guarantees that all the waves generated by the sources 2 E S(t) that operate on

the time interval 2T will leave the domain of interest S(t) before the waves generated by the other sources

from the periodic structure can enter this domain.

To actually build the second algorithm, we replace the differential equation and initial condition of

(2.20a) by the finite-difference equation and discrete initial condition, respectively:

E a,,,d,,(j,T z)=fi,,(j,T,z), j=l-s,l-s+l,...,l
n E Nm

v,(j, T, z) = O, if n4r_< (j-1)T+r,

where the right-hand side fro(j, T, z) is a z-periodic grid function with node values

(3.13a)

fro(j, T, z) = fj(J:,t,T,z) e=(m_h,,_h,,_h), t=m4_

The periodic boundary conditions (2.20b) are replaced by their discrete counterparts in every coordinate

direction x,, x.2, and x3 (the period is z = rh):
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v,,(j, T, z) = v,,(j, T, z)

n= (nl,n2,n3,n4), n'=(nl+klr, n2+k2r, na+kar, n4) (3.13b)

kl, k2, ka = 0, =l=l, +2,...

The approximation to the solution u(2., t) for x C S(t), (l - 1)T < t < IT, in tile second algorithm is

obtained as an approximation to the sum (3.10) (compare to (3.5) and (3.2), respectively):

(II}
n(nlh, n2h, n3h, n4T) _ u,, =

v,(I - s, T, z) + v,,(1- s + l, T, z) +... + v,,(l, T, z).

(3.14)

Each term vn(j, T, z), j = l_ s,l - s + 1 .... ,/,"on tile right-hand side of relation (3.14) solves the corre-

sponding problem (3.13). Clearly, the error estimate of type (3.8) (with ul[ 1 of (3.5) replaced by ul[ It of

(3.14)) provided by Theorem 3.1 for the first algorithm, will hold for the second algorithm as well.

As we did previously for the first algorithm, let us now consider the transition from I to I + 1 in formula

(3.1) in the framework of tile second algorithm. Assume we are interested in calculating the overall temporal

evolution of the solution from t = 0 till all arbitrarily large t = Tfinal. Over this period of time, the domain

S(t) that was centered at 2-0(0) = (x°(0), x°(0), x°(0)) at the moment t = 0 can travel arbitrarily far in st)ace

from its initial location, in fact, as far as kTfi,,,t:

fo t d2°2°(t) = (x°(t),x°(t),x°(t)) = e°(0) + --_-dt, (3.15a)

J2-0(t)l ___kTfinal , 0 < t < Tfinal. (3.15b)

In the z-periodic setting, all functions are defined for Ixil < z/2, i = 1,2,3, and the edges xi = +z/2,

i = 1, 2, 3, are identified with one another. Accordingly, instead of the motion described by relation (3.15a),

we consider the motion of S(t) on a three-dimensional toroidal surface. Instead of (3.15a) we will then have

{( )}1 2,°(0) + z 2'2,°(t) = (x°(t)'x°(t)'x°(t)) = z ---_-dt - - (3.16a)

where {-} denotes the fractional part. Also, conforming to the periodicity conditions, inequality (3.15b)

transforms into

[2°(t)[ <_ z/2, 0 < t < T_._,. (3.16b)

The computational procedure does not change much. We calculate separately every term on the right-hand

side of (3.14). When we go from I to 1 + 1, we stop calculating vn(l - s,T,z) and add the new term

vn(l + 1,T,z). This allows us to run the computation arbitrarily long with no error accumulation and
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no growth of computer expenses per time step. In so doing, of course, the center 2°(t) of S(t), as well

as the entire domain of interest S(t) itself, can be located anywhere within the period, i.e., ill the cube

{Ixil <_ z/2, i = 1, 2, 3}, and not necessarily close to its middle. This, however, does not affect the solution

calculated inside S(t) because according to condition (3.12), no waves from outside ('an enter tile d()main

S(t) before the waves generated inside S(t) by tile sources that operate during the interval 2T leave it. Then,

as soon as these waves have left, this entire portion of the solution, both the waves generated inside S(t)

that have already left it and the waves generated outside S(t) by the other sources of the periodic structure

that operate during the same time interval it taken out by eliminating the term v,,(l - s,T,z) in the sum

(3.14). As has been pointed out, this does not essentially change anything inside S(t) as the waves have

already left, but it prevents tile waves generated outside from propagating fnrther ill

The second algorithm appears somewhat more efficient than the first one as tile actual domain size

an(l cousequently, the number of grid nodes involved, are smaller for the second algorithm, compare (3.12)

against (3.9). The number of terms s + 1 in formulae (3.5) and (3.10) does not depend on the grid size h if

T does not depend on It. If, however, T decreases as h decreases (when the grid is refined) then the number

s and also constants involved in the estimates IO(h-3)l _< Kh -3 grow. If T ,-_ r, then tile number s becomes

•_ = O(h -l) and the operations count, accordingly, O(h -4) instead of the non-improvable quantity O(h-a).

The third algorithm keeps the non-improvable asymptotic order O(h -3) for both the numl)er of arith-

metic operations and amount of memory required for advancing one time step even if T decreases when the

grid is refined as long as T _> r I in r I.

The Third Algo_ithm. The third algorithm uses exactly the same approximation on each time step as

the second algorithnl does (see (3.10)). However, the computations in the third algorithm are organized in a

substantially different way. In this algorithm, instead of calculating separately each term on tile right-hand

side of (3.14) we rather use a "one-sweep" time-marching approach and when it comes to the transition

from l to l + 1 in (3.1), the term v,,(l - s, T, z) on the right-hand side of (3.14) is taken out by the explicit
subtraction.

Introduce a new grid flmction

l;_(l,s,T,z)= k v,(j,T,z), (3.17)

j=l--s

where v,(j,T, z) is the solution of problem (3.13). Here s is the same integer number as in formula (3.10).

Notice that for any n = (nl h, n2h, nah, n47) only several terms of the series (3.17) may differ from zero. For

those nodes it that belong to the grid time levels

(I-1)T (I-1)T IT
t=n4r, n4- , +1, ...,---1 (3.18)

T T 7-

the sum (3.17) coincides with the approximation of the solution u(2, t) given by formula (3.14) for

(nlh, n2h, nah) E S(t), t = n4r. Thus, the computation of i_(l,s,T,z) by formula (3.17) can be inter-

preted as the computation of the approximate solution by formula (3.14).

Substituting expression (3.17) into the left-hand side of the finite-difference equation (1.6), we obtain
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Z am,,_,,(1, s,T,z)=fm(l-s,T,z)+
n E N,,,

+f,,,(/- s + 1 T,z)+...+f,_(l,T,z)+...

According to the definition of 9(t), see (2.9), and formula (2.11), the following equality holds

(3.19)

for all those m, for which

fm= f(rnlh, m2h, m3h, rn4T) = _ fm(j,T,z)

j=l--s

(3.20)

m4r >_ (1 - s)T. (3.21)

Equalities (3.19) and (3.20) imply that the function t'_(l, .s',T, z) satisfies tile finite-difference equation

E a,,_,,V,,(l, s, T, z) = f .... (3.22)
7_E Nm

for those m, for which the inequality (3.21) holds. Clearly, for I = 0 and n4 = 0, Tt4 = 1 we have

V_(1, s,T,z) = O.

Assume now that for some integer I > 0 we already know the values of l.;t(1, s, T, z) on the first two time

levels of the grid (3.18), i.e., for n4 = (l- 1)T/7- and n4 = (I - 1)T/T+ 1. We will describe the computation of

I"n (l, s, T, z) on all other levels of the grid (3.18), as well as computation of (I + 1, s, T, z) for n4 = IT/r and

n4 = lT/T+ 1. Thus, we will have completed the cycle of going from the use of l,_(/, s, T, z) for calculating the

approximate solution on the grid levels (3.18) to the use of t',_(l + 1, s, T, z) for calculating the approximate

solution on the subsequent levels

t : 7_,4T _

So, having specified l._ (l, s, T, z) for

IT lT (l + 1)T
lt4 -- , + 1, ... , 1.

T T T

(l- I)T (l- I)T
t : n4T, 7t4 -- and -- + 1,

T T

we calculate the values of I.'_,(/, s, T, z) on all other levels of the grid (3.18) using the explicit finite-difference

scheme (3.22). Then, the values of I"n(/+ 1, s, T, z) for n4 = IT/T and n4 = IT/7 + 1 can be obtained with

the help of the following obvious recurrence formula:

I_(/+ 1, s,T,z) : I;,(1,s,T,z) - v,(1 - s,T,z). (3.23)
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Tile first term on the right-hand side of formula (3.23) is calculated with tile explicit scheme (3.22) using tile

data __ (l, s, T, z) that have already been obtained on the last two levels n4 = IT/T - 2 and n4 = lT/v - 1

of tile grid (3.18). The second term v,_(I - s, T, z) on the right-hand side of formula (3.23) is tile solution of

problem (3.13) for j = l - .s. The rigilt-hand side f,, (j, T, z) of the latter problem may differ from zero only

for those m = (ml h, m2h, m3h, m4T) that satisfy

(l-s-1)T<m4T< (l - s + l)T,

and the initial data for calculating v,, (l - s, T, z) are homogeneous.

The actual computation of v,, (l - s, T, z) will be split into two stages. First, we will calculate the solution

v,,(l - s, T, z) with the explicit finite-difference scheme step after step in time for the levels

(l- s - 1)T (l - s + 1)T
t:n4r, n4- ,..., (3.24)

T T

Tile computation of vn(l -- s, T, z) on the levels (3.24) takes

2T z 3

arittunetic operations, where p is the number of operations required for calculating the solution in one grid

node on the next time level while tile solution on the two previous levels is already known. (In other words,

p is the number of arithmetic operations "on the stencil" of the scheme.)

The values of the solution vn(l - s,T,z) on the last two levels of (3.24), i.e., n.l = (l - s + 1)T/T - 1

and n4 = (I -s + 1)T/T, will be used as the initial data for calculating this solution v,(1- s,T,z) for

n4 -- IT/T and n4 = IT/T + 1. As the right-hand side fr, (I - s, T, z) is equal to zero, f,,,(l - s, T, z) = 0, for

m4 >_ (I - s + 1)T/T, an efficient way to calculate the solution vn(l - s, T, z) for n4 = IT/v and n4 = IT/T + 1

will be through representing it in the form of a discrete Fourier series while the initial data for vn(I - s, T, z)

on the levels n4 = (l - s + 1)TIT - 1 and n4 = (l - s + 1)TIT are known. The aforementioned finite Fourier

exl)ansion is built with respect to the following system of grid basis functions e_i:

ej, = exp(i(n,j)), i = v/L-i -,

n=(nl,n2,n3), j=(jl,j2,j3),

Z

jl, j2, j3 = 0, 1,2 .... , _ - 1,

{n,j) = nljl + n2j2 + n3j3.

Hereafter we assume that z/h is a power of 2 so that the fast Fourier transform (FFT) can be used for for

calculating the coefficients of the discrete Fourier series of a given grid function, as well as for restoring the

point-wise values of the grid function from its Fourier representation. Each of the foregoing transformations

requires
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z 3 z

arithmetic operations.

Thus, the second stage of the computation of v,_(I - s, T, z) for n4 = lT/T and n4 = IT/'r + 1 will first

consist of Fourier transforming the data on the last two levels of grid (3.24), which takes (3.26) operations

(twice the actual amount of (3.26) for two levels). Then, we advance each Fourier component independently

to the levels n4 = lT/7 and n,l = 1T/7 + 1 using tile explicit formulae that are easily obtained from the

Fourier representation of the finite-difference operator of (3.22); essentially, this reduces to multiplication by

the appropriate powers of the corresponding amplification factors and obviously takes O ((_)3) operations.
%

Finally, we need to restore the point-wise values of v,_(l - s, T, z) at 70 = 1T/-r and n4 = IT/7 + 1 using the

inverse FFT, which again takes (3.26) operations. The overall computational cost of this second stage will

then be

o +o +o :o (3.27)

arithmetic operations. Consequently, the total operations count for calculating v,(l - s, T, z) for n4 = IT�7

and n4 = lT/T+ 1, i.e., calculating the second term in the recurrence formula (3.23), consists of the expenses

for the first (3.25) and second (3.27) stages and adds up to

p 7- + 0 _ In (3.28)

operations. Recurrence formula (3.23) is used for the entire "chunk" of 2T/T time levels, (1 - s - 1)T < t <

(1 - s + 1)T. Therefore, if one recalculates the associated expense (3.28) proportionally per time step, it

obviously reduces to

(z)3 ;)p _ + 0 _ _ In = 0 _ .

The calculation of the first term in the recurrence formula (3.23) also requires (9/((_)3)-\ arithmetic operations
%

per time step as this is done simply using the explicit scheme (3.22).

(():,)Summarizing, we conclude that the overall computational cost of the third algorithm is O _, arith-

metic operations per one time step. It is also easy to see that the required amount of memory (i.e., number

of words) is of the order O ((h) 3) as well.
_ x

As the third algorithm essentially reproduces the calculation according to formula (3.14) with the differ-

ence only in the computational procedure, the uniform error estimate of type (3.8) provided by Theorem 3.1

for the first algorithm, will hold for the third algorithm as it does for the second algorithm. Moreover,

the interpretation of spatial periodicity given by formulae (3.16) and subsequent comments for the second

algorithm, applies to the third algorithm with no changes.
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4. Possible Generalizations. First, let us note that the assumption of llomogeneity of the initial data

(1.2) can be alleviated and replaced by a weaker requirement

'u(_, t) t=o On(2, t) t=o= _o(2), Ot = _(_)'

where _ao(2) and _al (_) are sufficiently smooth functions that turn into zero outside the domain S(t)lt=o =

S(0).

Further, the requirement of smoothness for f(J:, t) throughout the entire space-time (2, t) along with the

consideration of f(:_, t) only for t > 0 actually implies that f(2, t) and its first severM derivatives with respect

to t have to be smooth as t --_ +0. This condition can also be alleviated by requiring that the function

f(2, t), suppf(2, t) C S(t), be smooth for t __ 0 rather than on the entire spaceotime (2, t). The resulting

Cauchy problem, which appears somewhat more complex, can actually be reduced to problem (1.1), (1.2) if

one represents the solution to the new problem as a sum of two functions:

_(_, t) = v(2, t) + _(2, t).

The function v(2, t) will be a solution to the Cauchy problem with the given non-homogeneous initial data

and the right-hand side F(2, t) = o2(t)f(2, t) that turns into zero for t _> 1. The function w(2, t) will be a

solution to the probleni

s., o:., o:w)
ot--v: - \ _ + _ + o_ ] = f('_' t) - F(2, t),

Ow

w t=o _ -_ t=o --0"

t_>O,

(4.1)

Problem (4.1) is obviously of the type (1.1), (1.2). The problem for v(2, t) needs to be solved only till some

t = to, after which v(2, t) = 0 when 2 C S(t) because of the presence of lacunae in the solutions of the

three-dimensional wave equation.

Another possible generalization includes building similar lacunae-based algorithms for the long-time

numerical integration of problems in acoustics (linearized Euler's equations), electromagnetics (Maxwell's

equations), and elastodynamics (Lame's equations). These algorithms may then be used for constructing

highly accurate global genuinely time-dependent ABCs in the corresponding fields of scientific computing.
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